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synopsis 
A theoretical relationship has been developed which relates the ultimate strength of a 

composite containing spherical fillers to the size, volume fraction, and surface adhesion 
of the dispersed phase. The theoretical predictions are compared to experimental 
data using glass beads of known diameters in polyester resin matrix. Results were 
compared for the case of poor adhesion between the glass beads and the matrix and for 
the case of good adhesion. The derived relationships should be useful in helping to 
optimize the strength properties of particulate reinforced systems. 

INTRODUCTION 

Although there are a number of theories describing the elastic modulus 
behavior of filled polymer systems, a satisfactory treatment of the strength 
behavior of composites reinforced with rigid fillers has not yet been de- 
veloped. 

Nielsen, in his review of the mechanical properties of particulate-filled 
systems, wrote: “Except for the case of filled rubbers, practically there is 
no good theory to guide one’s thinking on the stress-strain properties of such 
materials. Empirically, it is known what will often happen, but the 
reasons for the observed behavior are often not clear.” Nielsen, l v 2  using 
very simple models, gave semiquantitative prediction of the ultimate 
strength of composites in relation to the filler concentration for the case of 
perfect adhesion, and also no adhesion, between the filler and polymer 
phases. Nielsen’s equations, however, do not include the effect of filler 
diameter on the ultimate strength of the composite. 

Nicolais and Narkis3 obtained an equation for the yield strength of poly- 
mer-filler systems which is very similar to that proposed by Nielsen. 

Sahu and Broutman4 used finite element analysis in order to  predict the 
mechanical properties of thermosetting resins filled with glass micro- 
spheres. Although this method gives results in relatively good agreement 
with experiments, it is usually desirable to have not only a numerical solu- 
tion but also an analytical one related to the composite parameters. 

There have been a number of attempts to correlate the strength of a par- 
ticulate-filled systems at  a constant volume fraction of filler with the diam- 
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eter of the filler particles as, for example, in the published work of Hajo and 
Toyoshima.‘j It has been shown in these publications that the ultimate 
strength of the composite was a linear function of the reciprocal of the 
square root of the diameter of the filler particles. 

Alter’ also related the strength of the composite to the reciprocal of the 
diameter of the filler. 

The following treatment expresses the ultimate strength of a polymer 
filled with rigid spheres as a function of the volume fraction, the diameter, 
and the interfacial adhesion. 

EXPERIMENTAL 
Polyester resin (Stypol 40-2364, Freeman Chemical Co.) was used in all 

the examples. The resin was cured with 1% of a 60% solution of methyl 
ethyl ketone peroxide in dimethyl phthalate (Lupersol DDM, Lucidol 
Chemicals) catalyzed with 0.3% of a 6% solution of cobalt naphthenate in 
mineral spirits. Properties of the cured polyester resin are: tensile 
strength, 8,300 psi; flexural strength, 19,500 psi; shear strength, 4,150 psi 
(assumed to  be half of the tensile strength); specific gravity, 1.13. Table 
I specifies glass beads (Potters Industries Inc.) used as fillers. The specific 
gravity of the beads was 2.48. Surface finish of the spheres was: no coating, 
or CPOl coating-proprietary coating recommended for use with polyester 
resins (Potters Industries Inc.) 

The composites were prepared by mixing the resin with the curing agents 
and the glass beads, degassifying under vacuum for 5 min, and then casting 
the mixture between two glass plates separated by strips of rubber. In  
order to  prevent settling of the beads, the mold was inverted at  frequent in- 
tervals. The resin was cured for 20 min at  85°C and then postcured at  
100°C for 4 hr. 

The nominal volume percentage of glass spheres was lO-;iO’%; the actual 
weight percentage was determined, after the sample had been cured, by 
ashing techniques from which the volume fractions could be calculated from 
the known specific gravity of the spheres and the resin. 

The tensile and flexural strengths of the composites were measured on an 
Instron testing machine a t  a cross-head speed of 0.5 cm/min. 

For the tensile strength, two specimens were tested to obtain the average 
value, and for the flexural strength, three specimens were tested. Me- 

TABLE I 
Glass Beads Used as Fillers 

Stock size U.S. Sieve no. Diameter, mm 

1721 
1922 
2024 
2429 
2900 
3000 

45-80 
60-100 
70-140 

140-270 
minus 270 
minus 325 

0.354-0.177 
0.250-0.149 
0.210-0.105 
0.105-0.053 

-0.053 
-0.044 
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Fig. 1. Specimen prepared for the determination of frictional stress a t  matrix-filler 
interface. Force required to pull out the glass rod is equal to ndxpa. 

chanical properties of the unfilled resin test specimens were based on five 
separate measurements. 

In  order to  obtain the value of the frictional stresses a t  the filler-matrix 
interface T ~ ,  a test specimen as illustrated in Figure 1 was prepared. Using 
an Instron tester, a glass rod was pulled out of the polyester resin in which 
it was embedded. From the measured load-displacement curve, fric- 
tional stremes at  the glass rod-resin interface were calculated to  be 1540 
psi (in case of no adhesion). 

THEORETICAL 

In  order to  derive an analytical expression for the ultimate strength of 
the composite filled with spheres, the following approach was used. The 
well-established theory of Kellys and Outwaterg for fiber reinforcement was 
applied to  the case of spheres after certain modifications. This way, the 
stress distribution in the beads, at the breaking point of the composite, was 
obtained. Average stress in the beads combined with volume fraction of 
the beads expressed the maximum load carried by the filler. 

In  order to calculate the maximum load carried by the matrix, it was as- 
sumed that the ultimate strength of the matrix itself is affected by the 
presence of the filler. This assumption is justified since the solid inclusions 
act as stress concentrators (Griffith’s cracks). 

The ultimate strength of the composite is simply the sum of the maxi- 
mum load carried by both the matrix and the filler. 

No Adhesion 

Figure 2 shows the model which was used in the calculation of the stress 
distribution in the beads. A sphere has been approximated by a series of 
cylinders which makes possible the application of the well-known fiber re- 
inforcement theories.sv9 

Since there is no adhesion in this case, the stress is transferred from the 
matrix to  the sphere by frictional forces such that 

Tx = Pva (1) 
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Fig. 2. Diagram of model used in developing the relationship for stress distribution in a 
spherical bead utilizing the short fiber analogy. 

where r2  is the component of frictional stress in the x direction, p ,  is the y 
component of the pressure exerted by the matrix on the sphere, and CY is 
the coefficient of friction. 

It is shown in Figure 3 that the value of p ,  is constant and equal to the 
radial pressure p exerted by the matrix on the bead due to the shrinkage of 
the resin on curing and to the difference in the coefficients of thermal expan- 
sion of the matrix and the filler. 

The pressure at the matrix-filler interface is identical to a hydrostatic 
pressure and therefore does not depend on the direction in which it is 
memured. 

The force transferred from the matrix to the bead over the element of 
length dx is 

d F  = Zryr ,dx.  (2 )  

By combining eqs. (1) and (Z), a differential equation is obtained which 
gives the load distribution in the bead: 

_ -  - 2rypCY. 
d F  
dx (3) 

In  order to solve eq. (3), y w m  expressed in terms of the radius of the sphere 
T and x, that is, 

(4) y = d2l-x - x2. 
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Fig. 3. Relationship between radial pressure exerted by the matrix on the filler particle 
and the y component of this pressure. 

The dimensionless parameter x /r  can be introduced in place of x whereby 

The integrated solution of this differential equation is given by eq. (6) : 

F = ?rparr2 [(I' - l ) d 2  (7'> - (:y + sin-' (: - 1) 4- 51. (6 )  

The stress distribution in the bead can now be obtained by dividing the 
value of the load in any particular position in the bead by the corresponding 
cross-sectional area. Thus, 

Figure 4 shows the graphic representation of eq. (7) (lower curve) for par = 
1540 psi. 

The average stress in the bead is equal to the area under the u-versus- 
( z /T )  curve: 

navs = i1 od (:) = 0 . 8 3 ~ ~ ~ .  
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Fig. 4. Stress distribution in the particle of a spherical filler a t  the breaking point of a 

composite for the case of adhesion (upper curve) and no adhesion (lower curve). 

The average stress in the bead at the breaking point of the composite is 
a function of a frictional stress p a  only and is independent of the diameter 
of the sphere. 

If it is assumed that the cross-sectional area of the composite filled with 
randomly oriented spheres is equal to one, then the portion of the cross- 
sectional area attributed to the beads is also vb, where v b  is the volume 
fraction of the beads. The maximum load carried by the beads is then 
equal to 

The load carried by the matrix at the breaking point of the composite is 
Ub = U a v g v ~  = 0.83PCtvb. (9) 

= Kaum(1 - v b )  (10) 
where u,, is the ultimate strength of the matrix and K is the relative 
change of the strength of the matrix due to the presence of the filler. 
Hajo and Toyashima6 showed experimentally that at constant filler volume 
fraction, the strength of the composite was proportional to the reciprocal 
of the square root of the filler diameter. Since the maximum load carried 
by the filler is independent of the filler diameter, it follows that the ultimate 
strength of the matrix is dependent on d-' / ' .  Hajo and Toyashima'j ex- 
plain their results on the basis of Griffith's theory and also refer to the work 
of Petch.lO 

In this-study, Hajo and Toyashima's relationship was modified in order 
to describe the relative change of matrix strength in the presence of filler 
particles: 

K = a + bd-'/% 
where a and b are constants. 
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Since in real situations the filler particles rarely have uniform diameters, 
there is a problem in the choice of diameter to  be used in eq. (11). It was 
assumed that the strength of the composite was principally controlled by 
the largest diameters of the filler particles (which give the lowest strength 
of the composite). 

Equations (9) and (10) may be combined to  give an expression for the 
ultimate strength of the composite: 

U u c  = Ub + Urn = 0.83paVb + Kourn(l - v b ) .  (12) 
According to  eq. (la), the ultimate strength of the composite in case of no 

adhesion between the matrix and the filler is a linear function of v b .  

For constant vb, the ultimate strength is a linear function of d-'/', which 
is in agreement with work of Hajo and Toyoshima.6 Values of uuc ex- 
trapolated to vb = 0 are equal to Ku,, and depend on the diameters of the 
spheres. The value of uuc extrapolated to  v b  = 1 is equal to  0.83 p a  and 
is the same for all filler diameters. vb = 1 represents an imaginary com- 
posite consisting of 100% glass spheres bonded together wherein the 
strength depends on the properties of the interface ( p a ) .  

.Effect of Interfacial Adhesion 
When there is good adhesion between the spheres and the matrix, stress 

is transferred from the matrix to  the filler in two ways: through shear 
stresses a t  the matrix-filler interface and through the 2 component of 
the tensile stress a t  the matrix-filler interface. The maximum stress in the 
bead is reached when the shear stress in the x direction, rz,  reaches the 
ultimate shear strength of the matrix and the tensile stress at the interface 
attains the filler-matrix bond strength. 

As indicated by eq. (9), the load carried by the beads in case of no ad- 
hesion is proportional to  vb, viz., 

= c1vb (13) 

where c1 is a constant. 
matrix-filler adhesion : 

where crr is a constant. 

matrix is, therefore, given by 

Similar dependence is expected in the case of 

ub = czvb (14) 

When the matrix-filler bond fails, the additional load placed on the 

A U b  = (C2 - C 1 ) v a  

SO that (a) at low volume fractions of the beads, the additional load placed 
on the matrix is small and does not cause catastrophic failure; the strength 
of the composite is the same sts in the case of no adhesion; and (b) at high 
volume fraction, the additional load placed on the matrix is large and leads 
to  catastrophic failure of the composite. 

Since the case of low volume fraction vb is similar to the previous case 
with no adhesion, only the case of high volume fraction v b  need be dis- 
cussed. 

(15) 
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The stress in the bead is the sum of a stress transferred by shearing and 
stress transferred by the x component of the tensile stress at the matrix- 
filler interface. It is assumed that the maximum stress transferred by the x 
component of the tensile stress is the same in any particular position in the 
bead and equal to the strength of the matrix-bead adhesion u,. 

The stress transferred from the matrix to  the sphere by shearing can be 
calculated in the manner described in part 1. Equations (2) to (8) apply 
here, where the shear strength of the matrix r,  is substituted for the fric- 
tional stresses pa. 

Modified eq. (7) has the form 

where u8 is the stress transferred by shearing. 

and by the x component of the tensile stress at a matrix-filler interface: 
The total stress in the bead is a sum of a stress transferred by shearing 

Figure 4 (upper curve) shows the stress distribution in the bead when r,  
= 4150 psi and a, = 6700 psi where the value of a, may be estimated from 
the experimental data. 

The average stress in the bead is equal to the area under the u-versus-x/T 
curve, viz., 

The load carried by the beads at the point of failure of the composite is 
then given by 

ub = (a, + 0.837,)Vb. (19) 

It was assumed that the maximum tensile stress in the x direction at the 
matrix-filler interface was equal to the interfacial adhesion a,. Due to 
stress concentration, the average tensile stress in the matrix is usually lower 
than the stress at the filler-matrix interface. The stress concentration 
factor was defined as 

(20) 
average tensile stress in matrix at breaking point of the composite 

tensile stress in z direction at matrix-filler interface (= 0.) 
s =  
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The load supported by the matrix is given by 

(Tm = (Tas(1 - vb). 

Equations (19) and (21) combined give an expression for the ultimate 
strength of composites filled with spheres (for the case of high v b  and 
matrix-filler adhesion) : 

Uuc = (a, + 0 . 8 3 ~ m ) V b  + aaS(1 - vb). 

cue = 0.83paVb + KU,,(l - V b ) .  

(22) 

(12) 

For low volume fraction v b ,  eq. (12) applies, viz., 

There is one particular value of vb at  which u,, calculated from eq. (12) 
is equal to  uue calculated from eq. (21). At this particular volume fraction 
of the filler, the composite exhibits minimum ultimate strength. By equat- 
ing the right sides of eqs. (12) and (22), the value of the volume fraction 
of the filler a t  minimum composite strength can be calculated: 

(23) 
Ku,,  - 0,s 

ua + 0.837, + Ku,, - uaS - 0 . 8 3 ~ ~ ~  V b m i n  = 

Thus, eq. (12) applies for 0 < v b  < V b m i n  and eq. (22) for v b m i n  < vb < 1. 
Values of u,, extrapolated t o  vb = 1 depend only on 7 ,  and are inde- 

pendent of the filler diameters. On the other hand, values of uuc extrapo- 
lated to vb = 0 are dependent on the diametrs of the particles of the 
spherical filler. 

RESULTS AND DISCUSSION 
As was shown in the theoretical treatment, the ultimate strength of the 

composite filled with spherical filler is a linear function of v b .  Coefficients 
of these straight lines were obtained from the experimental results using the 
least-squares fitting. The results for tensile samples are shown in Table 11. 
Since it is postulated that the value of u,, extrapolated to  v b  = 1 is inde- 
pendent of the diameter of the filler particles, the average value of u,, at  

TABLE I1 
Ultimate Tensile Strength of the Composites 

Extrapolated to v b  = 0 and v b  = 1 (First Fitting) 

Ultimate strength Ultimate strength 
Stock size Diameter, U u c  at v b  = 0, Uue at v b  = I,* 
of beads mm psi psi 

~~~ ~ 

1721 0.354-0.177 5870 827 
1922 0.250-0.149 7060 480 
2024 0.210-0.105 7460 501 
2429 0.105-0.053 7148 260 
2900 -0.053 8515 440 
3000 -0.044 8180 720 

a The average value of uuc at V h  = 1 is 540 psi. 
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TABLE I11 
Ultimate Tensile Strength of the Composites 

Extrapolated to v b  = 0 and vb = 1 (Second Fitting)- 

Ultimate strength Ultimate strength 
Stock size Diameter, uYc a t  Vb = 0, uUc a t  Va = 1, 
of beads mm psi psi 

1721 0.354-0.177 5950 
1922 0.250-0.149 7044 
2024 0.210-0.105 7450 540 psi for all 
2429 0.105-0.053 7071 sizes 
2900 -0.053 ‘8049 
3000 -0.044 8227 

8 The standard deviation of the fitting is 2~260 psi. 

tens i le  
strength = 10-3(PSi.) 

K E Y :  
O beads 1721 

beads 1922  

A beads 2429 
0 beads 2900 
9 beads 3000 

A beads  2024 

‘0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ‘ 

Fig. 5. Tensile strength of a composite as a function of the volume fraction of the filler 
for different sphere diameters (refer to Table I). 

v b  = 1 was calculated to be 540 psi, and the least-squares fitting was re- 
peated again with the assumption that the point (uue = 540 psi, V,  = 1) 
is common for all lihes. Results of this fitting are shown in Table 111 and 
graphically in Figure 5. The value of u,, at V,  = 1 was also calculated 
from eq. (12) : 

u,, (at v b  = 1) = 0.83pa = 0.83 X 1540 psi 

= 1278 psi 

which is greater than the 540 psi average value obtained from Table 11. 

by the ultimate strength of the matrix. 
The values of K were determined by dividing the values of uuc at v b  = 0 

The values of K versus d-”’ are 
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Fig. 6. Relative change of ultimate tensile strength of the matrix due to the presence of 
the spheres as a function of the diameters of the largest beads present in the sample. 

plotted in Figure 6. It is apparent that small particles weaken the matrix 
to  a lesser extent than large particles. 

Figure 7 shows the relationship between the ultimate strength of a com- 
posite filled with glass spheres and the volume fraction when there is ad- 
hesion between the matrix and the filler. Lines representing the ultimate 
strength of the composite in the low volume fraction region were taken 
directly from Figure 5 (case of no adhesion). The assumption that the 
ultimate strength of the composite a t  low volume fraction j r b  is the same 
for the case of matrix-filler adhesion and no adhesion is in good agreement 
with the experimental results. Test samples were prepared in the region 
V ,  = 10% to  V ,  = 50%. Outside this region samples could not be pre- 
pared so that the theoretical relationship could not be compared over the 
full range of V,. However, the assumptions that uuc at v b  = 1 does not 
depend on the diameter of the spheres and that uuc is a linear function of 
V ,  is in agreement with the experimental results. 

The value of uuc at V ,  = 1 for the case of the matrix-filler adhesion is 
approximately 10,100 psi. Assuming T~ = 4150 psi, u, was calculated to  be 
6700 psi from eq. (22). By examining the electron-scanning photomicro- 
graphs of the fracture surface of the composite samples in Figure 8, it is ex- 
pected that 6, is only slightly smaller than a,,, since there are spots on the 
surface of the beads covered by the resin (for such spots u, > uum). 

Figure 9 shows the dependence of the ultimate strength of the composite 
filled with glass microspheres (stock size 2429) on the volume fraction of 
the beads for diffekent values of the matrix-filler adhesion bond strength as 
determined from eq. (22) (assuming S = 0.57 as calculated from Figure 7 
and eq. (22) using rm = 4150 psi). 
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Similar results were obtained for the ultimate flexural strength of the 
composite. Tables IV and V show the results of first and second curve 
fitting. Figure 10 shows the dependence of the flexural strength on volume 
fraction Vb for the case of no adhesion, and Figure 11 shows the same de- 

I I I I I I I I 
0.2 0.4 0.6 0.8 

"b 
3 

Fig. 7. Tensile strength of composite as a function of the volume fraction of the filler for 
different stock sizes of the filler when there is adhesion between the matrix and the filler. 

(a) (b) 
Fig. 8. Electron-scanning photomicrograph of the fracture surface of the polyester- 

glass microbead (stock size 3000) composite; (a) untreated beads; (b) treated beads. 
Magnification 850X. 
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TABLE IV 
Ultimate Flexural Strength of the Composites 

Extrapolated to v b  = 0 and V I  = 1 (First Fitting) 

Ultimate strength Ultimate strength 
Stock size Diameter, Uuc at vb = 0, Uuc at v b  = 1,' 
of beads mm psi psi 

1721 0.354-0.177 13,590 3430 
1922 0.250-0.149 16,690 4510 
2024 0.210-0.105 16,410 5640 
2429 0.105-0.053 20,450 233 
2900 -0.053 21,940 1010 
3000 -0.044 21,850 1100 

a The average value of uuc at Vb == 1 is 2650 psi. 

Fig. 9. Tensile strength of polyester resin-glass bead composite as a function of the 
volume fraction of the beads for different values of matrix-filler bond strength, as 
calculated from eq. (22). 

pendence when there is adhesion. 
than those obtained from the tensile experiments. 

Values of K (Fig. 12) are slightly higher 

CONCLUSIONS 
It has been shown that the ultimate strength of a composite filled with 

spherical filler particles is a linear function of V b  and, for constant volume 
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TABLE V 
Ultimate Flexural Strength of the Composites 

Extrapolated to v b  = 0 and v b  = 1 (Second Fittingp 

Ultimate strength Ultimate strength 
Stock size Diameter, uuc at v b =  0, uuc at v b  = 1, 
of beads mm psi psi 

1721 0.354-0.177 13 780 
1922 0.250-0.149 17,090 
2024 0.210-0.105 16,880 2650 psi for all 
2429 0.105-0.053 19 J 900 sizes 
2900 -0.053 21,560 
3000 -0.044 21,410 

a Standard deviation of the fitting is f 5 2 0  psi. 

1 I I I I I I I 1 t 

0 0.2 0.4 0.6 0.8 1 
"b 

I 

Fig. 10. Flexural strength of composite as a function of the volume fraction of the 
filler for different stock sizes of the beads (refer to Table I) (no matrk-filler adhesion). 

fraction of the filler, is inversely proportional to the square root of the 
sphere diameter, i.e., d-'''. 

The ultimate strength of the matrix alone is altered by the presence of the 
beads and can be obtained from the plot uuc versus v b  by extrapolating the 
values of uuc to v b  = 0. The slope of the K-versus-d-"' plot as well as 
the values of K probably depend on the notch sensitivity of the matrix. 

In the case of filler-matrix adhesion, the ultimate strength of the com- 
posite as a function of v b  is given by two straight lines: (a) for Small 
volume fraction V,-identical to that for the case of no adhesion, negative 
slope; the ultimate strength of the composite decreases with increase in 
the volume fraction of the filler; (b) for large volume fraction Vb-positive 
slope; strength of the composite increases with increase of the volume frac- 
tion of the filler. 
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Fig. 11. Flexural strength of composite as a function of the volume fraction of the beads 
for different stock sizes of the beads (matrix-filler adhesion). 

2 
I 1 1 1 I I I I I I 

I 1  I 1 1  1 I I I  I I 
1 2 3 4 5 d-" (mm) 

4. 2. 1.8 .6 4 .2 .1 .08 .06 .04 d (m m) 
Fig. 12. FLelative change of flexural strength of the resin due to the presence of the filler 

as a function of the diameters of the largest beads present in the sample. 
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Similar relationships were obtained for both ultimate tensile and ultimate 
flexural strengths. Thus, the strength dependence follows the same pat- 
tern as observed for fiber-filled composites. 

Although the results obtained in this treatment are valid only for com- 
posites filled with spherical fillers, the derived relationships with minor 
modifications may also be employed to  characterize composites containing 
fillers with irregular shapes. 

The authors wish to express their appreciation to the Defence Research Board for 
financial support under Grant No. 7501-08. 

Nomenclature 
diameter of the spherical particle 
load carried by the bead 
relative change of the strength of the matrix due to  the presence of 

radial pressure exerted by the matrix on the filler particles 
y component of the pressure exerted by the matrix on the filler 

the radius of the sphere 
stress concentration factor 
volume fraction of the beads 
volume fraction of the beads at  which the composite strength is a t  

its lowest value 
coefficient of friction 
2: component of frictional stresses a t  the matrix-filler interface 
stress in the bead 
matrix-filler adhesion bond strength 
average stress in the bead 
maximum load carried by the filler 
maximum load carried by the matrix 
ultimate strength of the composite 
ultimate strength of the matrix 
stress transferred from the matrix to the spfere by shearing at  the 

the filler 

particles 

interface 
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